Skip to main content

A Good Run!


“We got a good run from the tests” the tester stated.
“So what’s the story?” the scrum master asked.
“85% Pass” comes the reply, meekly.
“OK, just need to fix that 5% then.” The scrum master announces before striding off to announce that the team is only a couple of % away from success.

Our tester takes a moment to try and process the exchange…


Firstly, their own words:
“We got a good run”
Why had they said that? Well - in a sense - it was true. They had executed the tests before, and they had returned a much higher failure rate. But the code being checked was the same...

OK, so there were at least 3 obvious ways to interpret the data.
  1. The app code meets the criteria checked by the tests. ( Based on test run 2 )
  2. The app code does not meet the criteria checked by the tests. ( Based on test run 1 )
  3. The tests are as reliable a the toss of the coin. ( Based on both test runs )

Its surprising how unlikely people are to choose (3).


Secondly, the scrum master’s words:
“just need to fix that 5%”
Our tester assumes this relates to the de-facto “threshold” that is usually considered as good enough to release. As if the results were a linear scale, such as height or weight. If your code gets over 90% then it gets to pass the gate and get on the release roller-coaster.

The threshold tends to be arbitrary, I worked with a client that thought 86% was good but 83% was just not fit for purpose! Their use tends to indicate a problem. Why are we caring about a number rather than a possibly broken feature? What features or risks do the failing 10% represent? Why do we have so many routine failures?

Do you hear these sort of conversations in your team? If so, then your team might need some coaching.

Comments

Popular posts from this blog

Can Gen-AI understand Payments?

When it comes to rolling out updates to large complex banking systems, things can get messy quickly. Of course, the holy grail is to have each subsystem work well independently and to do some form of Pact or contract testing – reducing the complex and painful integration work. But nonetheless – at some point you are going to need to see if the dog and the pony can do their show together – and its generally better to do that in a way that doesn’t make millions of pounds of transactions fail – in a highly public manner, in production.  (This post is based on my recent lightning talk at  PyData London ) For the last few years, I’ve worked in the world of high value, real time and cross border payments, And one of the sticking points in bank [software] integration is message generation. A lot of time is spent dreaming up and creating those messages, then maintaining what you have just built. The world of payments runs on messages, these days they are often XML messages – and they ...

What possible use could Gen AI be to me? (Part 1)

There’s a great scene in the Simpsons where the Monorail salesman comes to town and everyone (except Lisa of course) is quickly entranced by Monorail fever… He has an answer for every question and guess what? The Monorail will solve all the problems… somehow. The hype around Generative AI can seem a bit like that, and like Monorail-guy the sales-guy’s assure you Gen AI will solve all your problems - but can be pretty vague on the “how” part of the answer. So I’m going to provide a few short guides into how Generative (& other forms of AI) Artificial Intelligence can help you and your team. I’ll pitch the technical level differently for each one, and we’ll start with something fairly not technical: Custom Chatbots. ChatBots these days have evolved from the crude web sales tools of ten years ago, designed to hoover up leads for the sales team. They can now provide informative answers to questions based on documents or websites. If we take the most famous: Chat GPT 4. If we ignore the...

Manumation, the worst best practice.

There is a pattern I see with many clients, often enough that I sought out a word to describe it: Manumation, A sort of well-meaning automation that usually requires frequent, extensive and expensive intervention to keep it 'working'. You have probably seen it, the build server that needs a prod and a restart 'when things get a bit busy'. Or a deployment tool that, 'gets confused' and a 'test suite' that just needs another run or three. The cause can be any number of the usual suspects - a corporate standard tool warped 5 ways to make it fit what your team needs. A one-off script 'that manager' decided was an investment and needed to be re-used... A well-intended attempt to 'automate all the things' that achieved the opposite. They result in a manually intensive - automated process, where your team is like a character in the movie Metropolis, fighting with levers all day, just to keep the lights on upstairs. Manual-automation, manu...