Skip to main content

Being a square keeps you from going around in circles.

After a weary few hours sorting through, re-running and manually double checking the "automated test" results, the team decide they need to "run the tests again!", that's a problem to the team. Why? because they are too slow. The 'test' runs take too long and they won't have the results until tomorrow.

How does our team intend to fix the problem? ... make the tests run faster. Maybe use a new framework, get better hardware or some other cool trick.
The team get busy, update the test tools and soon find them selves in a similar position. Now of course they need to rewrite them in language X or using a new [A-Z]+DD methodology. I can't believe you are still using technology Z , Luddites!

Updating your tooling, and using a methodology appropriate to your context makes sense and should be factored into your workflow and estimates. But the above approach to solving the problem, starts with the wrong problem. As such, its not likely to find the right answers
.
The team are spending hours unpicking the test results. The results can't be trusted and need to be rerun or manually reviewed. They are the problems. Until you address the reliability, accuracy and precision of the automated checks they will always be a major source of failure demand

That dream of freeing up the team to move quicker or let the testers do more exploratory or security focused testing will remain a dream - while the team spend excessive time picking through the bones of your test results.

Your "automated tests" are a measuring tool. They help you measure the quality of your app. Imagine if your ruler reported a different length every 3rd time you used it! You'd blame the ruler and build or buy a better ruler. Rather than bemoan the time is takes to get an accurate measurement - while re-measuring objects to get "best of three!".

Try fixing or just disabling the flaky tests. Test your automated tests. Don't "create a failing test then see it pass" - investigate whether it was failing for the right reasons and then passing for the right reasons. Speak to your team mates e.g.: "How can I create Problem X realistically to check that my tests pick it up reliably?"

Do you hear these sort of conversations in your team? If so, then your team might need some coaching.

Comments

Popular posts from this blog

The gamification of Software Testing

A while back, I sat in on a planning meeting. Many planning meetings slide awkwardly into a sort of ad-hoc technical analysis discussion, and this was no exception. With a little prompting, the team started to draw up what they wanted to build on a whiteboard.

The picture spoke its thousand words, and I could feel that the team now understood what needed to be done. The right questions were being asked, and initial development guesstimates were approaching common sense levels.

The discussion came around to testing, skipping over how they might test the feature, the team focused immediately on how long testing would take.

When probed as to how the testing would be performed? How we might find out what the team did wrong? Confused faces stared back at me. During our ensuing chat, I realised that they had been using BDD scenarios [only] as a metric of what testing needs to be done and when they are ready to ship. (Now I knew why I was hired to help)



There is nothing wrong with checking t…

A h̶i̶t̶c̶h̶h̶i̶k̶e̶r̶'s̶ software tester's guide to randomised testing - Part 1

Mostly Harmless, I've talked and written about randomisation as a technique in software testing several times over the last few years. It's great to see people's eyes light up when they grok the concept and its potential. 
The idea that they can create random test data on the fly and pour this into the app step back and see what happens is exciting to people looking to find new blockers on their apps path to reliability.
But it's not long before a cloud appears in their sunny demeanour and they start to conceive of the possible pitfalls. Here are a few tips on how to avert the common apparent blockers. (Part 1) Problem: I've created loads of random numbers as input data, but how will I know the answer the software returns, is correct? - Do I have to re-implement the whole app logic in my test code?
Do you remember going to the fun-fair as a kid? Or maybe you recall taking your kids now as an adult? If so then you no doubt are familiar with the height restriction -…

Betting in Testing

“I’ve completed my testing of this feature, and I think it's ready to ship”
“Are you willing to bet on that?”
No, Don't worry, I’m not going to list various ways you could test the feature better or things you might have forgotten.
Instead, I recommend you to ask yourself that question next time you believe you are finished. 
Why? It might cause you to analyse your belief more critically. We arrive at a decision usually by means of a mixture of emotion, convention and reason. Considering the question of whether the feature and the app are good enough as a bet is likely to make you use a more evidence-based approach.

Why do I think I am done here? Would I bet money/reputation on it? I have a checklist stuck to one of my screens, that I read and contemplate when I get to this point. When you have considered the options, you may decide to check some more things or ship the app. Either could be the right decision.
Then the app fails…
The next day you log on and find that the feature is b…