Skip to main content

The Like-Live Paradox

I was recently struck by a glaring difference between how I and a programmer prepared for testing. Unlike the majority of the testing I am involved in, this particular testing 'phase' had to be scheduled in advance and we couldn't "just do it". This also meant we had more time to prepare and plan than we typically do.

This 'waiting period' had its uses. We had time to create tools that might be useful and check the configuration of the systems we would be testing. The team, familiar with the concepts of exploratory testing, were comfortable with an approach that meant we did not spend the majority of the time pre-scripting tests [be they coded or in a spreadsheet etc]. We did however build a high-level checklist of areas to test and used this to drive our program of tools and configuration checking/fixing/building.

The key difference I observed was the absolute nature of the programmers comparisons between our test systems and our live-production systems. As a tester, I was used to the usual concerns of how test systems differ to production systems. Testers, me included, often go through great pains to obtain and maintain 'like-live' test systems.

The absolute nature of their concerns, seemed to swing from faith to despair. If a particular configuration did not appear like 'live' then few conclusions might be drawn from any future results. And conversely, If some other setup did match the 'live' system, then great confidence could be ascribed to a particular result.

While they may indeed be correct (we won't know until the changes are live and have been exercised there). It was the absolute nature of their views that surprised me. As a tester I tend to be more circumspect. I don't expect my tests to be exactly representative of future live failure scenarios. I realised I see the problem more grey-scale rather than black & white. While I strive to create test systems that are like-live, I am often happy with just knowing the differences.

I also realised that I had often deliberately tried to make my systems less like-live. I often contrived to create un-realistic situations that could have illuminated behaviour that I might not otherwise of seen. After all, I am trying to disprove an assumption or hypothesis. Such an assumption would probably have been based on previously-observed behaviour. Unless I can create previously un-observed behaviour, I am unlikely to see problems with the assumption.

To cause the system to exhibit some strange new behaviour, I frequently need what is often referred to as 'unrealistic' inputs.But while these inputs may seem unrealistic to us at the development/test-time, it could be we have just not been around long enough to see the issue arise. Much like the Turkey in Nassim Taleb's "The Black Swan", realistic is being fed well every day. Until the turkey finds-out that it is "Thanks Giving" and its outlook is somewhat bleaker .

We might wish that we create perfect tests or "experiments", and only vary one item at a time, the reality is a little more human. Our tests and apparatus are always flawed. A bug may only be visible because of un-intended human error or a 'difference' from how things were meant to be. In fact this is quite likely the case, as homogenous cleanly built test systems will have been 'used' in a particular manner many times before our tests. Any glaring bugs in the 'happy path' are likely to of been discovered already.

For example, once while testing a network connection time-out, we uncovered a serious issue - by mistakenly trying to configure the system to talk to the wrong server. The new time-out configuration had worked fine when the remote server had been 'down'. But when the remote server didn't exist at all, and the system could not even locate a path to it on the network, the time-out was ignored. Unless we had mistakenly misconfigured the software, we may never have found this issue. This tester led process by which we realised that our solution was too narrowly focused, helped the team to expand their solution to fit many wider failure scenarios.

I've developed a learned-trust of the differences, knowing both the benefits and perils of un-live-like systems. This sort of depth of experience with uncertainty is another area where testers can improve a teams ability to handle the practical problems of software development. We can add depth and qualification to the information testing delivers, helping our businesses weigh the relative merit of the data. Further to this we can suggest how we might improve the accuracy of the information we deliver, without resorting to absolutes.

Comments

Popular posts from this blog

A h̶i̶t̶c̶h̶h̶i̶k̶e̶r̶'s̶ software tester's guide to randomised testing - Part 1

Mostly Harmless, I've talked and written about randomisation as a technique in software testing several times over the last few years. It's great to see people's eyes light up when they grok the concept and its potential. 
The idea that they can create random test data on the fly and pour this into the app step back and see what happens is exciting to people looking to find new blockers on their apps path to reliability.
But it's not long before a cloud appears in their sunny demeanour and they start to conceive of the possible pitfalls. Here are a few tips on how to avert the common apparent blockers. (Part 1) Problem: I've created loads of random numbers as input data, but how will I know the answer the software returns, is correct? - Do I have to re-implement the whole app logic in my test code?
Do you remember going to the fun-fair as a kid? Or maybe you recall taking your kids now as an adult? If so then you no doubt are familiar with the height restriction -…

Betting in Testing

“I’ve completed my testing of this feature, and I think it's ready to ship”
“Are you willing to bet on that?”
No, Don't worry, I’m not going to list various ways you could test the feature better or things you might have forgotten.
Instead, I recommend you to ask yourself that question next time you believe you are finished. 
Why? It might cause you to analyse your belief more critically. We arrive at a decision usually by means of a mixture of emotion, convention and reason. Considering the question of whether the feature and the app are good enough as a bet is likely to make you use a more evidence-based approach.

Why do I think I am done here? Would I bet money/reputation on it? I have a checklist stuck to one of my screens, that I read and contemplate when I get to this point. When you have considered the options, you may decide to check some more things or ship the app. Either could be the right decision.
Then the app fails…
The next day you log on and find that the feature is b…

Software development is in the Doldrums

"Don't get off the boat."

"Seriously, never get off the boat," The instructor said, leaning forward and looking at each of us in turn.

"But surely if it's sinking..." We reply, somewhat confused and slightly incredulous. We've seen Titanic, we think to ourselves, we know how this sea survival stuff works...

"OK" He concedes, If things get really bad, "Get on the life raft if you can step-up from the boat to the life raft".

"But, But... the yacht is like 37ft long, Do we want to wait until that whole boat is lower than the life-raft? When less than 1ft of the yacht is above the surface? Meanwhile all the time the life raft is just there... floating happily alongside."

"Pretty much, yes," he said nodding.


That was about 15 years ago. Not much has changed since. The reasons are manifold. Firstly, the yacht is a decent shelter. The thin plastic of a legal minimum life-raft isn't going to protect you fro…