Skip to main content

Wrong end of the stick

There's a story about air-force scientists during world war 2, that reflects an interesting concept about the things we see and how they can alter our assumptions. The story goes that the allied bombers were suffering great losses during their air-raids of continental europe. The allied scientists got together and anaylsed the damage reports from the engineers tasked with fixing the planes after each raid. (One of the scientists working on these problems was Abraham Wald )

Here is an example of the sort of summary engineering reports they might of been faced with. The report details the parts of the plane and what proportion of aeroplanes had been damaged in that area: (This data is completely made up by me):
15% had damage to 1 or more engines
25% had tail damage
25% had damage to the nose and cockpit area.
35% had damage to the fuselage

The aircraft engineers could only add extra-armour to one part of the plane, any more armour would limit the aeroplane in other ways e.g.: making it an easier target or unable to carry its deadly-cargo. Where would you add the armour? If you wanted to do your best to ensure that plane and its crew returned, where would you place the bet?

The story goes that the answer relies on 2 more pieces of information. Firstly, the flak could affect any part of the aero-plane, and didn't tend to always affect one part more than another. The second, was that the engineers data is not the full picture. It suffers from a [literal] survivorship bias. What about the planes that didn't come back? What parts of the aircraft are not listed in the engineers reports?

For example, the wings are not mentioned above. The idea is that the most critically damaged aircraft never made it back to the engineers. These would never be recorded in the statistics, and so the damage reports tended to show an almost inverted view of what needed to be armoured. That is, if a plane received damage to its wings - it never came home. The wings needed the armour most.

This is a situation I've witnessed in software testing. The phenomenon can exhibit itself in many ways. For example a simple mis-use of metrics, does feature X have 10 bug reports recorded against it? but but feature Y has just 2? Maybe feature Y isn't less-broken but so broken that no-one can use-it well enough to find more bugs. While the 'buggy' feature Y is popular and receives a lot of attention from its users, reporting the quirks and bugs they see.

A more subtle example might be, in a performance test, one server appears to display fewer errors. Maybe that server has the 'right' configuration, or its hardware is better: lets make all our servers like the 'good-one'. But it could be that this server is mis-configured or mis-managed in some way. Perhaps its not taking its fair-share of the load - forcing an overload on the other servers. In this case approaching the results skeptically might in fact save you from mis-interpreting the results, and propagating a 'bad configuration' just because it seemed to help in one scenario.

For a tester, the simple heuristic that your apparent results are just that: apparent, to you. They may in fact represent, as above, an entirely 'negative' image of how the software is actually behaving. Its worth spending some time testing your tests, because how do you know you haven't got the 'wrong end of the stick'?

I hope I haven't trivialised an important albeit dark aspect of european history with this post. I hope I have helped to use the information learned for a better purpose. For those interested in some of the effects of the allied bombing on continental Europe you wish to start reading about the Bombing of Dresden. You may also find articles concerning The Blitz of interest.

Comments

Popular posts from this blog

The gamification of Software Testing

A while back, I sat in on a planning meeting. Many planning meetings slide awkwardly into a sort of ad-hoc technical analysis discussion, and this was no exception. With a little prompting, the team started to draw up what they wanted to build on a whiteboard.

The picture spoke its thousand words, and I could feel that the team now understood what needed to be done. The right questions were being asked, and initial development guesstimates were approaching common sense levels.

The discussion came around to testing, skipping over how they might test the feature, the team focused immediately on how long testing would take.

When probed as to how the testing would be performed? How we might find out what the team did wrong? Confused faces stared back at me. During our ensuing chat, I realised that they had been using BDD scenarios [only] as a metric of what testing needs to be done and when they are ready to ship. (Now I knew why I was hired to help)



There is nothing wrong with checking t…

Software development is in the Doldrums

"Don't get off the boat."

"Seriously, never get off the boat," The instructor said, leaning forward and looking at each of us in turn.

"But surely if it's sinking..." We reply, somewhat confused and slightly incredulous. We've seen Titanic, we think to ourselves, we know how this sea survival stuff works...

"OK" He concedes, If things get really bad, "Get on the life raft if you can step-up from the boat to the life raft".

"But, But... the yacht is like 37ft long, Do we want to wait until that whole boat is lower than the life-raft? When less than 1ft of the yacht is above the surface? Meanwhile all the time the life raft is just there... floating happily alongside."

"Pretty much, yes," he said nodding.


That was about 15 years ago. Not much has changed since. The reasons are manifold. Firstly, the yacht is a decent shelter. The thin plastic of a legal minimum life-raft isn't going to protect you fro…

A h̶i̶t̶c̶h̶h̶i̶k̶e̶r̶'s̶ software tester's guide to randomised testing - Part 1

Mostly Harmless, I've talked and written about randomisation as a technique in software testing several times over the last few years. It's great to see people's eyes light up when they grok the concept and its potential. 
The idea that they can create random test data on the fly and pour this into the app step back and see what happens is exciting to people looking to find new blockers on their apps path to reliability.
But it's not long before a cloud appears in their sunny demeanour and they start to conceive of the possible pitfalls. Here are a few tips on how to avert the common apparent blockers. (Part 1) Problem: I've created loads of random numbers as input data, but how will I know the answer the software returns, is correct? - Do I have to re-implement the whole app logic in my test code?
Do you remember going to the fun-fair as a kid? Or maybe you recall taking your kids now as an adult? If so then you no doubt are familiar with the height restriction -…